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Abstract-The bending of a thin elastic plate having a slanted through slit is investigated. To
describe the contact of the slit edges in the deformed state we introduce a non-penetration condition
and set the bending problem as a variational one. From the numerical point of view this variational
statement makes it possible to consider the slit plate bending problem as a constrained minimization
problem and to apply variou:; minimization algorithms to find the plate deformed state and the
contact efforts along the slit. The computational examples obtained by using the interior point
technique are given. © 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

We consider the bending problem for a thin Kirchhoff's plate having a through interior
slanted slit. The term slitted plate means that the plate has not only the outer borders but
the inner ones called the I~dges of the slit. In the non-deformed initial state the slit edges
touch each other along a two..dimensional surface and we say that this one describes the
foml of the slit. While for the outer borders of the plate standard fastening conditions can
be considered, for the slit edges it is natural to assume its moving without penetration. We
call this type of geometrical constraints for the slit edge displacements the non-penetration
condition. Instead of the term slit the term crack might be used in supposition that in the
initial non-deformed state the last one has a null opening.

Dealing with the plane plate problem and giving the attention to the crack propagation
in the existent crack theory several authors consider the boundary statement of this problem.
In these papers it was assumed that the crack remains open (see for example Cherepanov,
1979).

For bending plates in the crack theory the equilibrium problem has been studied by
Osadchuk (1985), Bui (1978), Mikhailov (1980), Mahmoud et al. (1992), etc. By analogy
with the plane case boundary formulations of the bending problem were used. With this
object boundary conditions for bending moments, shearing and stress forces at the crack
edges were introduced. However either these conditions do not suppose yet the contact
between the crack edges or the equivalence of these conditions to the non-penetration of
the crack edges is not established.

* Author to whom correspondence should be addressed. Permanent address: Lavrentyev Institute of
Hydrodynamics, 630090. Novosibirsk, Russia.
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Fig. I. Example I : bending of a slitted beam with non·penetration condition.

Nevertheless the penetration of the slit edges can essentially change the solution of the
plate bending problem even for Kirchhoff's model. In Fig. 1 and Fig. 2 are presented the
analytical solutions of slit plate bending problem in 1-0 case with non-penetration condition
(Kovtunenko et aI., 1998) and without this one. In both of these examples a unit length
beam having a vertical through slit at the middle and clamped in the ends was considered.
The uniformly distributed load acts in the right side of the beam. The difference of this
result is obvious. A,s we can see, without any conditions at the slit edges the vertical
displacements of the right side are big enough that the obtained solution is off the Kirchhoff's
thin plate theory. Thus, for the slitted plates it seems to be more correct to formulate the
bending problem taking into account the possibility of the contact of the slit edges.

In the present paper we consider the bending problem of thin plate assuming the
possibility of the slit edges contact. We introduce the non-penetration condition for the
case of slated slit and propose to set the slit plate bending problem as a variational one.
From the numerical point of view this variational statement makes possible to consider the
slit plate bending problem as a constrained minimization problem and to find the deformed
state and the contact efforts along the slit by solving this problem in primal/dual variables.
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Fig. 2. Beam with a vertical slit: bending without non·penetration condition.
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To do this we use Herskovits' interior point algorithm. We give some computational
examples in 1-0 and 2-0 cases which show the fulfilment of the non-penetration condition
and the suitability of the chosen numerical algorithm.

The model of the thin slit plate occurs not only in the technical applications. For
example tectonic plates, described in the geophysics theory as thin elastic plates (Turkotte
and Schubert, 1982), are supposed to have cracks which in general are slanted. It is assumed
that tectonic plate movements in the crack locations induces the mountain formation,
earthquake, etc. (Longwell et al., 1969).

The non-penetration conditions for the bending plate was first proposed in Khludnev
(1992) where the case of a vertical slit was considered. This condition was applied to a shell
problem in Khludnev (1995a). The bending of the crack plate under an obstacle was the
subject of the paper by Khludnev (1995b). In the 1-0 case an analytical solution of the
bending plate problem with a slit was constructed in Kovtunenko et al. (1998).

In the first section of our paper we propose a non-penetration condition for the slitted
plate, give the variational formulation of slitted plate bending problem and derive an
explicit expression for contact efforts along the slit in terms of dual variables. Section 2 is
devoted to the interior point algorithm. The numerical results in 1-0 and 2-0 cases and
the discretization techniques for the 2-0 case are presented in Section 3.

2. FOR~\tIULA nON OF THE SLiTTED PLATE PROBLEM

Non-penetration condition
Let us denote by W(x) = (UI(X), U2(X)) and w(x) horizontal and vertical displacements

of the point x = (x" x 2) of the plate middle plane n. Here n c R2 is a bounded domain
with a smooth boundary. Let 2h be the thickness of the plate. According to the right normal
hypothesis of Kirchhoff's plate theory (Rabotnov, 1979) the vertical displacements w(x,z)
of the points lying at the distance z towards the middle plane are w(x) ; the horizontal
displacements are given by the following relations:

W(x, z) = W(x) +zVw(x), Izi ~ h.

We suppose that in the non-deformed state the plate has an interior slanted slit with zero
initial opening. The form of the slit is described by the regular not self-crossing surface r
(Fig. 3). Considering the non··deformed initial state of the plate we introduce for each point
(x, z) E r the normal vector n(x, z) and we define positive r+ and negative r~ edges of the
slit. Let us denote by (l(x, z) the angle between n(x, z) and the middle plane n, by}' a curve
formed by the intersection of rand n. We note by ny the middle plane of the slitted plate.
Let vex) be a unit vector having the same direction as the projection of n(x, 0) at ny. Thus,

Fig. 3. Slitted plate: initial state.
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R(X,O) = (V(X) cos a(x, 0), sin a(x, 0)) and vex) is a normal to y. We denote by B x a vertical
plane passing through the point x Ey in the direction R(X,O) and by C, an intersection of
n, and r. Let us suppose that for each cross-section B x the curve C, is rectilinear. Thus,

R(X, z) = R(X,O) == R(X), a(x, z) = a(x, 0) == a(x), Vz, Izl ~ h

and the coordinates (x, z) of the surface r are defined by the following relations:

x = x-zv(x) tga(x), Izl ~ h, XEy.

Let us denote by j:·P(x) and w+(x) [respectively by W-(x) and w-(x)] the middle plane
point displacements at the positive (negative) side of y.

We assume now that if the plate middle plan displacements w(x) and W(x) are the
order o(hm

), m ~ 1 in the h-neighborhood of y, the gradients Vw(x), VW(x) are the same
order with respect to h. Then, for the angle a such that Icos al ~ I, we can take the
displacements at each point of positive C: (negative C;) side of the C, in the form:

(1)

(2)

This means that C; and C; left to be linear after the deformation.
Indeed, under the assumption above and the Kirchhoff's hypothesis, for the part of

C;(C;) which projection to the middle plan is in the positive (negative) side of the middle
plan the difference between the exact Kirchhoff's model displacements and our approxi­
mation will be of the order o(hm + 1). Besides, for the parts of C.: (C;), which projection is
in the negative (positive) side of the middle plan, the displacements cannot be found without
additional hypothesis and it seems to be appropriate the supposition that this part of the
slit remains linear also.

The slit edges non-penetration condition means that for each point of r the projection
of the difference between positive and negative edges displacements on the initial direction
of the normal n(x) has to be non-negative. Taken [W(x)] = W+(x)- W-(x),
[w(x)] = w+(x) -w-(x), XEy and using relations (I), (2), we can write this condition in the
following form:

([w], [Jf1 +z[Vw]) . R ~ 0 Vz, Izi ~ h, for every point x Ey,

or

(
ow) [ ow]<1> z, W, w'a.~ == W, w'-ov ·(n,zcosa) ~ 0, Izi ~ h, for very point XEy. (3)

Here [W, w, owjov] =([Jf1, [w], [owjov]), owjov is the normal derivative at y and "." denotes
the scalar product. Inequality (3) is linear in z; therefore if condition (3) holds for z = ± h,
it remains valid for all z, Izi ~ h. Thus, condition (3) can be represented in the equivalent
form:

or

(
ow)<I> z, W, w, ov ~ 0, z = ±h, for every point XE y (4)
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[W]. v+ [11'] tgO(-h 1 [~: ] I ~ a, for every point XEy.
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Hence taken 0( = athe known non-penetration condition for the case ofvertical slit (Khlud­
nev, 1992) can be obtained:

[W]. v ~ h I[~:] I, for every point xEy.

Thus, for thin plates condition (3) (or (4)) describes the displacements of the slanted slit
edges assuming its contact (equality sign) or its deviation (strong inequality sign) in some
a priori unknown locality, but simultaneously excepts its penetration.

Variational statement of the problem
Under Kirchhoff's hypothesis, the energy functional for an isotropic homogeneous

plate whose middle plane occupies the domain 0, is the following (Rabotnov, 1979) :

J(W, IV) = ~d(W, W)+~26'(w, 1V)-«F,f),(W, w»n,

there <., .>n denote the integration in the domain 0),

deW, W)= '§ r (Ul,lul,l +U2,2U2,2 +X(UI,lU2,2 +U2,2UI,I)
Jot'

26'(11', w)= f2! r (11',] I lV,I] + 11',22 W'22 +XIV,I] W,22 + XW,22 lV ,1 IJn
i

'§ ,= Eh/(I - x 2
), f2! = Eh 3/3(1 - x 2

), E is Young's modulus, x is Poisson's ratio, a < x < a.5,
(F,f) is the external forces vector, F = (fbf2) , TV = (Ub U2)' The subscripts after the comma
signify the derivative with respect to corresponding coordinates.

We put the clamped conditions at the exterior boundary of the domain 0)1:

ow
W= 11' = a; = a.

Here the normal derivative ilwlov corresponds with the exterior boundary of the domain
0,. At the curve y the non-penetration condition for the slit edges will be taken in the form
(4).

Let HL(OJ by a subspace of Sobolev's space HI(O,) contained the functions with
zero at the exterior boundary of the domain 0, and HL(O,) be a subspace of Sobolev's
space H 2(Oy) whose function;; and its first derivatives have zero at the exterior boundary of
the domain 0",

Let H = HL(Oy) x HL(Oy) x H~,,(O,) and the subset

where the non-penetration condition is enforced almost everywhere at y. Let us suppose
that FEL\Oy) x L 2(o,), fEl}(O.J. Thus, the equilibrium problem for the bending plate
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having a split y under the non-penetration condition can be formulated as a variational
problem:

* *inf J(W, w) = J(W, w).
(W.W)E%

(5)

The functional J(W, w) is coercive, weakly lower semicontinuous and strongly convex in H
(see Khludnev, 1995a) and the set :f{ is coincident. Thus, the minimization problem (5)
has one and only one solution (Ekeland and Temam, 1979) which will be denoted by
* *{W,w}.

Contact efforts along the slit
Let us introduce the strain tensor

From Hooke's principle, the stress tensor aiW), i,j = 1,2 for the homogeneous isotropic
plate has the form:

all(W) ,= o;"§(CI I(W)+ XC 22(W)), a22 (W) = o;"§(C22(W)+XC11(W)),

adw) = o;"§((l-x)CI2(W))'

Let us define at y the normal stress

the shearing stress

and the bending moments

Where r = (- V2, VI), Llw == W,ll + W,22' Taken W-, w- and - V instead of v, we define by the
same way the functions a-(W), r-(w) and m-(w) at y.

Let us suppose that the solution of the problem (5) is smooth enough such that

Then we can consider <I>(z, W, w, ow;ov) for z = ±h as an element of the space L2(y) and
suppose non-penetration condition (4) fulfilled almost everywhere at y. By analogy with
Khludnev (l995a) we can show that at y

* * *[a(W)] = [t(w)] = [m(w)] = 0

and denote

* + * * +(*) * +(*)a == a- (W), t == t- w, m == m- w .

For the case in question the existence of a solution of problem (5) is equivalent (Ekeland
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and Temam, 1979) to the existence of Lagrange multipliers /1, YJ E L 2(y), /1 :? 0, YJ :? 0 almost
everywhere at 'I, such that

J(lV,~) - \ /1, ~ (h, W, ~" ~:) ), - \ YJ, ~ ( -h, w,~, ~:) )y

:( J(W, w) - \ /1, ell (h, W, w, ~:') ), - \ YJ, ~ ( -h, W, w, ~:))/ V(W, w) E H, (6)

moreover,

\ /1,~ (h, w,~, ~:), = 0,

\ YJ, ~ ( -h, W,~, ~:) ), = 0

where <., .)'1 signify the integration by the curve y. By using Green's formula the minimum
condition (6) might be formulated in the following form:

* * / * * * [ ow] )<(A W, Bw) - (F,f),( W, w)n + \ (0", t, m), W, w, ov ,

- \ /1, ~ (h, W, w, ~:) ), - \ YJ, ~ ( -h, W, w, ~:) ), = 0, V(W, w) EH. (7)

Here the operators A and B are the following:

* * * * *AW ( (W) (W)) BU! = t7A A 2",.= - 0" IjJ ' 0" 2jJ ' " ::L! L.l "

The variational equality (7) means that everywhere in Q, the equilibrium equations hold:

and everywhere at the curve I' the following relation is fulfilled:

* * *(O",t,m) == /1(n,hcosrx)+YJ(n, -hcosrx).

(8)

(9)

Thus, solving the problem (5) in primal (W, w) and dual (/1,YJ) variables we find the
deformed state of slitted plate and the contact efforts along the slit.

3. INTERIOR POINT ALGORITHM

Performing the discretization of the variational problem (5) we get the following
mathematical programming problem:

Find

such that

where
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Here Yh = (u), U2, W)h is the discretization of the displacement vector, Hh is the discrete
analog of H, Jf'h is the discretization of Jf', Sh is the stiffness matrix corresponding to our
variational problem, Fh = (FJ)h is the discretization of the external force vector.

The set of constraints Jf'h might be presented as follows,

where A h is a matrix describing the constraints. Thus finally we get our problem in the
form:

L~~!h Jh(Yh),

lAhYh -Sh ~ O.

(10)

The algorithm presented below is based on a general technique for interior point algorithms
in nonlinear constrained optimization, proposed by J. Herskovits (Herskovits, 1991; Her­
skovits, 1986), that solves Karush-Kuhn-Tucker (KKT) first order optimality conditions.
To obtain these algorithms, we define Newton-like iterations to solve the nonlinear system
in the primal/dual variables (Yh, }.h) given by the equalities in KKT conditions. Then, these
iterations are slightly modified in such a way to have the inequalities in these conditions
satisfied at each iteration.

The algorithms require an initial estimate of Y,,, at the interior of the feasible region
defined by the inequality constraints, and generate a sequence of points also at the interior
of this set. They are feasible directions algorithms, since at each iteration they defined a
search direction that is feasible direction with respect to the inequality constraints and a
descent direction of the objective, or another appropriate function. When only inequality
constraints are considered, the objective is reduced at each iteration.

In what follows we omit the index b). We call the constraints g(y) == Ay-s, where
gERm. Then Vg(y) = A, diag[g;(y)] = G, diag[itl = A, i = 1,2, ... m and}. are the Lag­
range multipliers of the minimization problem.

Applying the KKT conditions to problem (10) we have:

Sy-F+ATA = 0, (11)

(Ay_g)Ti = 0, (12)

i;;:, 0, (13)

Ay-g ~ O. (14)

That consists in determining the pair (y, .Ie), such that the eqns (11)-(14) is verified. Con­
sidering that the subscripts (0) refer to the actual values of the iteration, the iterative
technique of Newton applied to these equations leads to

(
SAT) (YO-y) (VL)

AA G )'0 -J. = - GA .
(15)

Where L(y, i) is the Lagrangian of the problem (10). Solving the matrix system (15), for
yo-y = do:
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Solving the eqns (16) and (17) :

do = -S-l(R+C).
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(16)

(17)

Where W = AS-1AT-A -IG and R = -ATW-1AS-1C. To realize these operations, it is
necessary to assure the positiveness of Wand S. This result and the convergence of the
proposed algorithm is proved in Auatt et al. (1996).

Thus, in order to simplify, the following abstract of the iterative algorithm is presented:

Step I. Initialization. Choose: {yJ, ",0, Ge, Gd,

Step 2. Search Direction. Compute:

{

W=' AS-IAT -A-1G,

R = -ATW-1AS-1C,

Step 3. Convergence.

if gj i= 0, j = I ... m,

ifgj = O.

{

Ao = - W-1AS-1C,

d= -S-l(R+C).

{
IfIIC+AT}'oIIOC~G", or

otherwise I-> continue.

if II dll oc ~ Gd I-> end,

Step 4. Line Search. Compute: Ymin = min{yO, Ild11 2
},

l
CD,

tr = . f(Ymin -l)[gj(/)]}
mIll) k '

l ad.I

_ FTd--yTSd
t -------
f - dTSd '

make:

tf = min {fr, I},

t = min {t" tA.

Step 5. Updates. Make: Yj +-' Yj+ td, j = 1... m. Aj +-, max {I'Oj, YminA~,ax}, j = 1... m. Go to
Step 2.

4. NUMERICAL RESULTS

I-D Case
We present here two test problems in order to compare the numerical results obtained

by the interior point algorithm with the analytical solutions. In both of these examples a
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unit length beam of thickness 2h = 0.1 is considered. The beam has a slit at the point
x = 0.5 and is clamped at the endpoints x = °and x = 1. We take '§ = 1.

The discretization of the problem was performed by the finite element method with
the linear approximations for the horizontal displacements and the hermitian cube splines
for the vertical displacements. The step of the discretization is J = 0.01. We apply the
interior point algorithm with null initial iteration values and l = 0.01, B" = Bd = 10-8

.

Example 1
The angle of the slit is IX = 0. The distributed exterior force acting at the right side of

the beam has the vertical component only:

{
O,

F(x) = 0, f(x) =
c,

xE[0,1/2),

xE(l/2,1],
C = -1.

The analytical solution (um wa) (Kovtunenko et al. 1998) is

Ch {X, xE(0,1/2),
U (x) =---

a 48(1 +h2 ) x-I, xE(l/2,1),

XE(0,1/2),

xE(l/2,1).

The deformed state of the beam is presented in Fig. 1. The numerical solution (um wn) was
obtained after four iterations with accuracy

max IUn :ua
1= 4.82' 10- 2

, max IW
n~aWa 1= 2.61 . 10- 2

•

For the contact efforts at the slit we have:

1&1 =0.11'10- 2
; t=O; IA'JI =0.55'10- 4 (numerical results)

and

1&1 = 0.10' 10- 2
; t = 0; IA'JI = 0.52' 10- 4 (analytical results).

Let us note that in the same time the solution of the bending problem without non­
penetration condition (Fig. 2) gives us the slit edges free of efforts.

Example 2
The slit angle is IX = n/8. The distributed exterior force has the horizontal component

only:

{
- C, xE(0,1/2),

F(x) =
C, xE(l/2,1),

C = 0.05, f(x) = 0.

The analytical solution (ua, wJ (Kovtunenko et al. 1998) is
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Fig. 4. Exampk 2 : beam with a slanted slit under horizontal contractive loading.

XE(0,1/2),

xE(1/2,1),

Here e= l2h2
, P = 4h2+tt a. The Fig. 4 shows the state of the beam after the deformation.

For the numerical solution (u", wlI ) we have after four iterations:

I
u --u Imax ~-: = 1.44·1O~2,

For the contact efforts at the slit we have:

I
WIl-Wal 2max ~. = 3.36' 1O~ .

1&1 = 6.0012' 1O~4; ItI = 2.4432' 1O~4; ~ = 0 (numerical results)

and

1&1 = 6.8843' 10-4 ; ItI = 2.8516' 1O~4; ~ = 0 (analytical results).

2-D Case
A square plate of side length L = 1.60 m large and thickness 2h = 0.08 m, having a

linear slit I = 0.08 m long is considered (see Fig. 5). The exterior borders are clamped. We
take x = 0.25 and E = 100 GPa and load the plate symmetrically with respect to X2'

Discretization
We performed the discretization by 3-node triangular elements named Discrete

Kirchhoff Triangle (DKT), modeling the flexural behavior (Cook et al., 1989; Batoz et al.,
1980) and the Constant-Stram Triangle (CST), modeling the membrane behavior (Batoz
et £II., 1980).
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Fig. 5. Example 3, 4: plate with a linear central slit.
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Fig. 6. Discrete Kirchhoff Triangle (DKT).

The starting point for DKT is a triangular element with corner and midside nodes, see
Fig. 6. Rotations ej and e2 are interpolated from 12 nodal rotations el,i and e2 .h i = I, ... ,6
using a complete quadratic polynomial:

The vertical deflection W is assumed to be cubic in an edge tangent coordinate s. The three
rotation equations W.si at the midside nodes are written in terms of W h W,Lh W,2i the nine
degrees of freedom at corner nodes. There are a total of 21 degrees of freedom, that must
be reduced to nine. The 12 degrees of freedom eli and e2i at nodes 1-6 must be expressed
in terms of W h W,Ii, W,2i at only the corner nodes (Fig. 7). With this purpose the following
12 constants are applied:

(i) transverse shear strains t2z and tzJ vanish at corner nodes:

eli = W,1i and e2i = IV,2;, i= 1,2,3;

(ii) transverse shear strain I sz vanishes at midnodes:
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z,W XI.u

Fig. 7. Constant-Strain Triangle (CST).

o U
X2

Fig. 8. Example 3, 4: triangular element discretization for a plate with linear central slit.

8si = w,.";' i = 1,4,6;

(iii) normal slopes vary linearly along each edge:

8nk = ~(W,ni +W,nj), (i,j, k) = (l, 2,4) = (2, 3, 5) = (3, 1,6).

Concerning the CST membrane behavior model, the displacements u and v are linearly
interpolated by the six nodal degrees of freedom u, and Vi> see Fig. 7.

The mesh for one-half of the plate is presented in Fig. 8. We start the interior point
algorithm with null values at the initial iteration and yO = 0.01, 8 e = 8d = to- 8. The con­
vergence to the numerical solution was obtained in both examples below after 4-5 iterations.

Example 3
The angle of the slit is Ci. ,= O. The external force uniformly distributed on the rectangular

domain A (see Fig. 5) has only the vertical component! The deformed state of the plate is
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Fig. 9. Example 3 : slitted plate subjected to vertical loading.
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XI

Fig. 10. Example 3 : contact efforts diagram.

presented in Fig. 9. For the contact efforts we have: ~l = 0; 7= 0; i'tz = h· ~2; the diagram
of 1~21jlfl is given in Fig. 10.

Example 4

The angle of the slit 'Y. = - nj8. The horizontal force F is uniformly distributed on the
symmetric domains A and B (see Fig. 5). The shape of the plate after deformation is

presented in Fig. 11. For the contact efforts we have: ~1 = 0; i'tz = 0; the diagrams of

1~21/1F1 and 171/1F1 are given in Fig. 12.

5. CONCLUSION

The non-penetration condition allows us to consider the slitted plate bending problem
as a variational one. In turn, this variational statement makes it possible to apply the
interior point algorithm to calculate the plate deformed state and the contact efforts along
the slit. This algorithm requires the solution of two linear systems with the same matrix
at each iteration; furthermore it takes advantage of the structure of the problem and
particularities of the functions to improve calculus efficiently.



Optimization theory application to slitted plate bending problems

1.0 '

2693

0.5 0.8
Xl (m) 0.7 0.6 x2 (m)

Fig. II. Example 4 : plate with a slanted slit subjected to horizontal loading.

0.8 ,-----.--------------------,

1.11.00.90.7 0.8
XI

Fig. 12. Example 4: contact efforts diagram.

0.6

I021fF ( ......-)

It IfF (-0-)

o
0.5

0.4

0.2

0.3

0.1 1..-_--""-_.

0.5

0.6

0.7

Acknowledgements~The first author, A.L. is grateful for the CNPq's financial support of this research during his
stay as the Invited Professor at COPPE/University Federal of Rio de Janeiro, Brazil. The last author, C.E. also
thanks the CNPq for her research program at PUC-Rio, Brazil, support.

REFERENCES

Auatt, S., Borges, L. and Herskovits, J. N. (1996) An interior point optimization algorithm for contact problems
in linear elasticity. Numerical Methods in Engineering '96, Proceedings of the Second ECCOMAS Conference on
Numerical Methods in Engineering, 9-13 September, 1996, Paris, France, pp. 855-860. John Wiley and Sons,
New York.

Batoz, R. D., Bathe, K. J. and Ho, L. W. (1980) A study of three-node triangular plate bending elements.
International Journal of Numerica/ Methods in Engineering 15, 1771-1812.

Bui, H. D. (1978) Mecanique de la Rupture Fragile. Masson, Paris.
Cherepanov, B. P. (1979) MechaniC!' of Brittle Fracture. McGraw-Hill Book Company, New York.
Cook, R. D., Malkus, D. S. and Ple:;ha, M. E. (1989) Concepts and Applications ofFinite Element Analysis. John

Wiley and Sons, New York.
Ekeland, 1. and Temam, R. (1979) Convex Analysis and Variational Problems. North-Holland Publishing

Company.
Herskovits, J. N. (1986) A two-stage feasible directions algorithm for nonlinear constrained optimization. Math­

ematical Programming 36,19-38.
Herskovits, J. N. (1991) An interior points methods for nonlinear constrained optimization. Optimization ofLarge

Structural Systems, ed. G. Rozvany, Vol. 1, pp. 589-608. NATO/ASI series, Springer-Verlag, Berlin.
Khludnev, A. M. (1992) About external slit shapes in the plate. Izvestia Rossiiskoi Akademii Nauk, Mekhanika

Tverdogo Tela 1,170-176 (in Russian).
Khludnev, A. M. (l995a) A contact problem for sloping shell having a crack. Prikladnaia Matematia i Mekhanika

59(2),318-326 (in Russian).
Khludnev, A. M. (1995b) On (:ontact problem for plate having a crack. Control and Cybernetics 24(3),349-361.



2694 A. Le6ntiev et al.

Kovtunenko, V. A., Leontiev, A. N. and Khludnev, A. M. (1998) An equilibrium problem of a plate having a
slanting slit. Prikladnaya Mekhanika i Tekhnicheskaia Fiska 39(2), 162~172 (in Russian).

Longwell, C. R., Flint, R. F. and Sandres, J. (1969) Physical Geology. John Wiley and Sons, New York.
Mahmoud, A. A., Abdel-Tawab, K. I. and Nassar, M. (1992) The bending of elastically supported cracked plates.

Engineering Fracture Mechanics 43(2), 277-286.
Mikhailov, B. K. (1980) Plates and Shells with Discontinuous Parameters. Leningrad University Publisher, Len­

ingrad (in Russian).
Osadchuk, V. A. (1985) Stress-Deformed State and Limit Equilibrium ofSlilted Shells. Naukova Dumka, Kiev (in

Russian).
Rabotnov, Yu. V. (1979) Deformed Solids Mechanics. Nauka, Moscow (in Russian).
Turkotte, D. and Schubert, G. (1982) Geodynamics. New York.


